Outbreak of the future: 3D printing takes off like a shot.

Last week there was a cluster of outbreaks of the future (thanks, Warren Ellis, for the term) in the field of 3D printing that caught me by surprise, not by their appearance but how they appeared in rapid succession to one another.

The first is an industrial grade 3D printer called the Objet1000, which is marketed for the production of full-scale prototypes and industrial models. It has a fabrication platform 39 inches by 31 inches in size (a little bigger, actually, but I'm deliberately dropping decimals today), and can print with any of 120 different substances, of which 14 at a time may be used in the same object simultaneously. This means that the user doesn't have to halt the machine and reconfigure its hardware and software to accomodate another fabrication material, which is ordinarily a very time consuming operation. The objects it fabricates may be up to 238 pounds in weight, which is not a small object by any means. I'm not sure what the printing resolution is but it's specifically marketed for the automotive, aerospace, and industrial machinery industries so I'd guess the resolution would be comperable to that of the Replicator 2, and its accuracy is around a tenth of a millimeter (100 microns). Unfortunately the cost of this unit isn't specified anywhere, and as the saying goes, if you have to ask how much it costs you probably can't afford it anyway.

The second article is an older one (it's dated March of 2012) but it showed up on a sensor network I run just the same. A company based out of NASA's Ames Research Center called Made In Space is working on the problem of reducing the cost of orbital insertion. More specifically, it costs rather a lot of money to put hardware of any kind in space, which means that you have to plan ahead very carefully to ensure that you have what you need in orbit when you need it. The words "agile" and "space launch" just don't fit together. Made In Space aims to help fix this problem by making manufacturing possible in orbit by perfecting 3D printers that can operate in microgravity. So far they've tested their hardware on the Vomit Comit, and successfully fabricated a wrench during periods of simulated microgravity. It doesn't seem like much, but when you take into account the fact that when tools break on the International Space Station, they stay broken and have to be replaced during the next resupply mission. This means that replacements can, hypothetically speaking, be manufactured in realtime, thus shortening the turnaround time remarkably.

This brings me right along to a related advancement, which is fabricating satellites with 3D printers in orbit. CubeSats are standardized, generic frameworks upon which satellites can be constructed, starting a hair under four inches on a side and topping out around 12x4x4 inches. CalPoly and Stanford developed the spec to shorten development time, so they've become very popular with many satellite developers (there are more than you'd think out there). However, as before one of the barriers to entry is getting the thing in space, and that can cost several tens of thousands of dollars. Jacopo Piattoni of the University of Bologna has developed a set of designs that can be fabricated by a 3D printer (potentially while in orbit), which would again shorten the turn-around time to acquiring the necessary components to build a satellite in orbit. Again, this doesn't seem like much - 3d printers can't fabricate circuit boards (yet - that's steadily becoming more practical, too) nor electronic components, but this is a solid step in the direction of 3D printers becoming practical, everyday devices.

Remember when I said that 3D printers can't make circuit boards yet? Scratch that. Engineers at the University of Warwick announced that they've developed a simple and relatively cheap electrically conductive plastic that can be used in the process of fabbing circuit boards. The compound is said to work in most any 3D printer, including ones that you or I might have in our basements or home offices. If you're not familiar with the composition of printed circuit boards, they're basically a sheet of nonconductive material (usually plastic or fiberglass, but other materials are known) with trails of conductive material (usually copper or aluminum, but other substances are known) connecting the components. Etching your own PC boards is a tricky, nasty process, though, and you can't always get the chemicals you need when you need them, and may even be illegal in some areas (I'm looking at you, Texas), so this represents a significant step forward in small batch and open source hardware manufacture. Couple that with something like this, and the barrier to entry for just getting hold of a piece of equipment could potentially drop dramatically. If you're curious about carbomorph and are interested in experimenting with the plastic, their paper was published in the open-accees peer-reviewed journal PLOS - here it is.

And now, one last outbreak of the future for everyone who says that 3D printing is essentially a worthless technology. There are a lot of folks I've spoken to who don't think that 3D printing is really useful, because after all there won't be many people who are willing to spend the money to buy one, or have the know-how and inclination to build one themselves, right? While those discussions have been going on the 3D printing community has busy developing business models aimed as folks like you or I that don't involve investing in a 3D printer. Last week Mcor Technologies announced that they've partnered with the office supply chain Staples and will be installing 3D printers in their office centers starting in the Netherlands and Belgium in early 2013, with plans to deploy in other countries soon after. In addition to computers that you can pay by hour to use, photocopiers that charge a few cents per page for full-colour graphics and double-sided printing, bindery and printing services for bulk print runs, and layout services, you will also be able to e-mail them your designs and pick up the 3D printed end result from the store. When you take into account websites like Thingiverse and some repositories on Github, the turnaround time (yet again) to getting your hands on something you really need shortens even more. I think a few of us should suggest to Staples that they start adding catalogues of objects to the web interfaces to this particular service for commonly used things, to make it a bit more attractive to curious consumers. This also means that making unpopular or obscure objects available (the things that only a very small number of people might need) is more economically feasible, because they need only be fabbed when someone asks for them, and don't need to sit on a shelf being ignored by most people who are likely to walk by.