Simple environment monitoring with spare parts.

Jul 04 2020

It's going on summer in the Bay Area, which means that it's warming up a bit both outside and inside (because air conditioning is Not A Thing out here).  That, coupled with the not inconsiderable research infrastructure I have at home has left me wondering and worrying about just how hot my office gets during the day while I'm working.  Now, I could just put a simple little thermometer on my shelf (and I did) but my concerns are a bit bigger than that.  What happens if my office temperature reaches a critical point and servers start melting down on me?  I've dealt with heat damage in the past and don't particularly care to shell out a grand or so to replace parts that flatlined because I was away from the house and couldn't respond in time.  That, and the fact that I need to keep my mind busy while I'm stuck in quarantine if I'm going to be honest, are the reason why I built yet another weird-assed exocortex project: A relatively simple hardware monitor connected to a Raspberry Pi, and a bot that listens for commands and responds with what it can detect of the local temperature or humidity when I send it a message.

3D printing of nanomaterials and implanted prosthetic limbs.

Apr 02 2016

Long-time readers of my site no doubt know of my fascination with the field of 3D printing and tracking the advances that are made almost weekly to this technology. From simple plastic tchotchkes to replacement parts to materials that few ever dreamed would be used, 3D fabbers are fast becoming an integral part of manufacturing at all levels of complexity. A few months ago researchers at Lawrence Livermore National Laboratory published the results for a revolutionary 3D printer called the Optomec Aerosol Jet 500, a fabber which uses a range of nanomaterials as its feedstock. To cut to the chase they've been using it to construct electronic components and integrated circuits at the molecular level, laying down conductive pathways in three dimensions, constructing semiconductor units material by material, and linking everything together into working circuitry in situ. Current semiconductor prototyping fabs are huge, on the order of thousands of square feet in size but the Optomec is just slightly over 250 square feet in size, well within the working space of your average science lab (and doesn't use any of the incredibly dangerous chemicals ordinarily involved in semiconductor manufacture). The new generation fabber prints at a resolution of 10 microns, which is about the size of a large grain of pollen or silt but far to small for the human eye to discern unaided. I don't know when this technology will leave the lab but you can bet that the semiconductor giants are going to be keeping a close eye indeed on them, if only because eliminating many of the chemicals they use would raise their bottom line significantly (by not needing to worry about licensing and disposal costs).